The economy is down, but AI is hot. Where do we go from here?
It was heartbreaking to read over the weekend about how some Googlers in the US found out about the company’s abrupt cull. Dan Russell, a research scientist who has worked on Google Search for over 17 years, wrote how he had gone to the office to finish off some work at 4 a.m., only to find out his entry badge didn’t work.
Economists predict the US economy may enter a recession this year amid a highly uncertain global economic outlook. Big tech companies have started to feel the squeeze.
In the past, economic downturns have shut off the funding taps for AI research. These periods are called “AI winters.” But this time we’re seeing something totally different. AI research is still extremely hot, and it’s making big leaps in progress even as tech companies have started tightening their belts.
In fact, Big Tech is counting on AI to give it an edge.
AI research has swung violently in and out of fashion since the field was established in the late 1950s. There have been two AI winters: one in the 1970s and the other in the late 1980s to early 1990s. AI research has previously fallen victim to hype cycles of exaggerated expectations that it subsequently failed to live up to, says Peter Stone, a computer science professor at the University of Texas at Austin, who used to work on AI at AT&T Bell Labs (now known as Nokia Bell Labs) until 2002.
For decades, Bell Labs was considered the hot spot for innovation, and its researchers won several Nobel Prizes and Turing Awards, including Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. The lab’s resources were cut as management started pushing for more immediate returns based on incremental technological changes, and ultimately it failed to capitalize on the internet revolution of the early 2000s, Jon Gertner writes in his book The Idea Factory: Bell Labs and the Great Age of American Innovation.
The previous downturns happened after the hottest AI techniques of the day failed to show progress and were unreliable and difficult to run, says Stone. Government agencies in the US and the UK that had provided funding for AI research soon realized that this approach was a dead end and cut off funding.
Today, AI research is having its “main character” moment. There may be an economic downturn, but AI research is still exciting. “We are still continuing to see regular rollouts of systems which are pushing back the frontiers of what AI can do,” says Michael Wooldridge, a computer science professor at the University of Oxford and author of the book A Brief History of AI.