IBM wants to build a 100,000-qubit quantum computer
The qubits will exist on a type of modular chip that is only just beginning to take shape in IBM labs. Modularity, essential when it will be impossible to put enough qubits on a single chip, requires interconnects that transfer quantum information between modules. IBM’s “Kookaburra,” a 1,386-qubit multichip processor with a quantum communication link, is under development and slated for release in 2025.
Other necessary innovations are where the universities come in. Researchers at Tokyo and Chicago have already made significant strides in areas such as components and communication innovations that could be vital parts of the final product, Gambetta says. He thinks there will likely be many more industry-academic collaborations to come over the next decade. “We have to help the universities do what they do best,” he says. Google is of the same mind: in a separate deal, it is devoting $50 million to funding for quantum computing research in the same two universities.
Gambetta says the industry also needs more “quantum computational scientists,” people skilled in bridging the divide between the physicists creating the machine and the developers looking to design and implement useful algorithms.
Software that runs on quantum machines will be vitally important too. “We want to create the industry as fast as possible, and the best way to do that is to get people developing the equivalent of our classical software libraries,” Gambetta says. It’s why IBM has worked to make its systems available to academic researchers over the last few years, he says: IBM’s quantum processors can be put to work via the cloud using custom-built interfaces that require minimal understanding of the technicalities of quantum computing. He says there have been some 2,000 research papers written about experiments using the company’s quantum devices: “To me that’s a good indication of innovation happening.”
There is no guarantee that the $100 million earmarked for this project will be enough to achieve the 100,000-qubit goal. “There’s definitely risk,” Gambetta says.
Joe Fitzsimons, CEO of Horizon Quantum, a Singapore-based quantum software developer, agrees. “This is unlikely to be a completely smooth journey without surprises,” he says.
But, he adds, it’s a risk that has to be taken: the industry has to face the fear of failure and make attempts to overcome the technical challenges facing large-scale quantum computing. IBM’s plan seems reasonable, Fitzsimons says, although there are plenty of potential roadblocks. “At this scale, control systems will be a limiting factor and will need to evolve significantly to support such a large number of qubits in a reasonably efficient way,” he says.